20 research outputs found

    Analysis of Eye-Tracking Data with Regards to the Complexity of Flight Deck Information Automation and Management - Inattentional Blindness, System State Awareness, and EFB Usage

    Get PDF
    In the constant drive to further the safety and efficiency of air travel, the complexity of avionics-related systems, and the procedures for interacting with these systems, appear to be on an ever-increasing trend. While this growing complexity often yields productive results with respect to system capabilities and flight efficiency, it can place a larger burden on pilots to manage increasing amounts of information and to understand intricate system designs. Evidence supporting this observation is becoming widespread, yet has been largely anecdotal or the result of subjective analysis. One way to gain more insight into this issue is through experimentation using more objective measures or indicators. This study utilizes and analyzes eye-tracking data obtained during a high-fidelity flight simulation study wherein many of the complexities of current flight decks, as well as those planned for the next generation air transportation system (NextGen), were emulated. The following paper presents the findings of this study with a focus on electronic flight bag (EFB) usage, system state awareness (SSA) and events involving suspected inattentional blindness (IB)

    Analysis of Eye-Tracking Data During Conditions Conducive to Loss of Airplane State Awareness

    Get PDF
    In the constant drive to further the safety and efficiency of air travel, the complexity of avionics-related systems and of the procedures for interacting with them appear to be on an ever-increasing trend. While this growing complexity often yields productive results with respect to system capabilities and flight efficiency, it typically places a larger burden on pilots to manage increasing amounts of information and to understand intricate system designs. This can be problematic as too much information and/or ineffective provisions of information can potentially overwhelm and/or confuse pilots, and as a result, increase the likelihood of loss of airplane state awareness (ASA). One way to gain more insight into this issue is through experimentation using more objective measures. This study summarizes an analysis of eye-tracking data obtained during a high-fidelity flight simulation study that included most of the complexities of current flight decks, as well as several planned for the next generation air transportation system. Multiple analyses were performed to understand how the 22 participating airline pilots were observing ASA-related information provided during different stages of flights and in response to specific events within these stages. Also, study findings are compared to data presented in similar previous studies to assess trends or common themes regarding how airline crews apply visual attention in complex flight deck and operational environments

    Safeguard: Progress and Test Results for a Reliable Independent On-Board Safety Net for UAS

    Get PDF
    As demands increase to use unmanned aircraft systems (UAS) for a broad spectrum of commercial applications, regulatory authorities are examining how to safely integrate them without compromising safety or disrupting traditional airspace operations. For small UAS, several operational rules have been established; e.g., do not operate beyond visual line-of-sight, do not fly within five miles of a commercial airport, do not fly above 400 feet above ground level. Enforcing these rules is challenging for UAS, as evidenced by the number of incident reports received by the Federal Aviation Administration (FAA). This paper reviews the development of an onboard system - Safeguard - designed to monitor and enforce conformance to a set of operational rules defined prior to flight (e.g., geospatial stay-out or stay-in regions, speed limits, and altitude constraints). Unlike typical geofencing or geo-limitation functions, Safeguard operates independently of the off-the-shelf UAS autopilot and is designed in a way that can be realized by a small set of verifiable functions to simplify compliance with existing standards for safety-critical systems (e.g. for spacecraft and manned commercial transportation aircraft systems). A framework is described that decouples the system from any other devices on the UAS as well as introduces complementary positioning source(s) for applications that require integrity and availability beyond what can be provided by the Global Positioning System (GPS). This paper summarizes the progress and test results for Safeguard research and development since presentation of the design concept at the 35th Digital Avionics Systems Conference (DASC '16). Significant accomplishments include completion of software verification and validation in accordance with NASA standards for spacecraft systems (to Class B), development of improved hardware prototypes, development of a simulation platform that allows for hardware-in-the-loop testing and fast-time Monte Carlo evaluations, and flight testing on multiple air vehicles. Integration testing with NASA's UAS Traffic Management (UTM) service-oriented architecture was also demonstrated

    UAS Autonomous Hazard Mitigation through Assured Compliance with Conformance Criteria

    Get PDF
    The behavior of a drone depends on the integrity of the data it uses and the reliability of the avionics systems that process that data to affect the operation of the aircraft. Commercial unmanned aircraft systems frequently rely on commercial-off-the-shelf and open source avionics components and data sources whose reliability and integrity are not easily assured. To mitigate failure events for aircraft that do not comply with conventional aviation safety standards, operational limitations are typically prescribed by regulators. Part 107 of the Federal Aviation Regulations serves as a good example of operational limitations that mitigate risk for small unmanned aircraft systems. These limitations, however, restrict growth possibilities for the industry. Any reasonable path toward achieving routine operation of all types of drones will have to address the need for assurance of avionics systems, especially their software. This paper discusses the possibility of strategically using assured systems as a stepping stone to routine operation of drones. A specimen system for assured geofencing, called Safeguard, is described as an example of such a stepping stone

    The stakeholder model refined

    No full text
    The popularity of the stakeholder model has been achieved thanks to its powerful visual scheme and its very simplicity. Stakeholder management has become an important tool to transfer ethics to management practice and strategy. Nevertheless, legitimate criticism continues to insist on clarification and emphasises on the perfectible nature of the model. Here, rather than building on the discussion from a philosophical or theoretical point of view, a different and innovative approach has been chosen: the analysis will return to the origin of stakeholder theory and will keep the graphical framework firmly in perspective. It will confront the stakeholder model's graphical representation to the discussion on stakeholder definition, stakeholder identification and categorisation, to re-centre the debate to the strategic origin of the stakeholder model. The ambiguity and the vagueness of the stakeholder concept are discussed from managerial and legal approaches. The impacts of two major shortcomings of the popular stakeholder framework are examined: the boundaries and the level of the firm's environment, and the ambivalent position of pressure groups and regulators. Working pragmatically, with a focus on the managerial and organisational perspective, an attempt is made to clarify the categorisations and classifications by introducing new terminology with a distinction between stakeholders, stakewatchers and stakekeepers. The analysis will finally lead to a proposed upgraded and refined version of the stakeholder model, with incremental ameliorations close to Freeman's original model and a return of focus to its essence, the managerial implications in a strategic approach
    corecore